[更新7/11, 2018]

反復測定の分散分析とG*Power


葛西 俊治

(元・札幌学院大学心理学部臨床心理学科教授)


■ 反復測定分散分析のG*Powerの設定例


  • ・要因内×要因間の分析 ANOVA: Repeated measures, within-between interactions

    反復測定の分散分析
    「被験者間要因:性別2水準、 被験者内要因:3期間の3水準」の設定例 (7/11, 2018追加)

    この参考例は、以下のサイトに基づいています。

    [ How to use GPower ] (英語)
    ※上のサイトは宗教的な内容を含むサイトにありますが、G*Powerの設定の1〜54の全て(Exact, F tests, t tests, χ2tests, Z tests)について網羅していること、それぞれについての設定例をYouTube動画で説明しているため、敢えてリンクをしています。また動画は英語文の解説のみでトークはなくコンパクトで使いやすいこともその理由です。

    内容は、男女二群(被験者間要因)に、一ヶ月・二ヶ月・三ヶ月の3つの期間、体重減少サプリメントの効果を投与した際の効果をみる「要因内・要因間 分散分析」となっています。
    ビデオ動画はこちら→ 反復測定分散分析のG*Powerの設定例



     〜 解説 A prior: 必要なケース数の事前の検討〜



    38. 反復測定 被験者内・被験者間交互作用の分散分析
    (反復測定ANOVA [RMANOVA] 被験者内変数と被験者間変数の交互作用の検定)


    ANOVA: Repeated measures, within-between interaction
    (Repeated measures ANOVA [RMANOVA] for testing the interaction between a within subjects variable and a between subjects variable)

    :被験者16名(女性8名、男性8名)を用いて、体重減少サプリメントの効果を検定する研究を計画する。参加者の体重は一ヶ月、二ヶ月、三ヶ月の3回測定する。時期は被験者内変数であり、性別は被験者間変数である。時期の変数と性別の変数の間に有意な相互作用を検出するために必要な被験者数はどのくらいだろうか?

    [Detemine]をクリックする(右側に明細を指定する画面が出る)。 "Effect size f" を決めるために、直接法(direct)を選ぶ。「偏イータの 2 乗値」(partial eta squared, partial η2) が、被験者内変数・被験者間変数の相互作用を測るための効果量である。この例では、性別と時期の相互作用によって説明される部分の変動量(variability)を入れる。偏イータ2乗値の近似値は、(効果量)小では0.02、中では0.06,大では0.14である (ここでは 0.06と設定している)。
    [Calculte]をクリックすると、効果量"Effect size f"が表示されるので、[Calculate and transfer to main windows]をクリックして、効果量の数値を元の主画面に移行させる。

    主画面では、"α err prob"(第一種の過誤または有意水準)の数値を設定する。通常は0.05または0.01である。
    "Power (1-β err prob)"には、検定力の数値を入れる。通常は(Cohenの慣例値によると) 0.80である。
    "Number of groups" は、被験者間要因(性別)の水準数であり、この例では性別の二値、2である。
    "Number of measurements"は、反復測定の回数であり、この例では3つの時期なので3である。
    "Corr among rep measures"、すなわち反復測定間の相関では、反復測定の列の間での相関の近似値を入力する。この値は、ある程度の高さのはずである。なぜなら、患者の血液検査の結果は、他の患者達の検査結果と比較すれば時期に関わらずかなり一貫しているはずだからである。この例では、デフォルト値の0.50を用いることにする。


    結果はTotal sample size ="28"なので、男女とも14名の被験者が必要となる。
    なお、検定力をCohenの慣例値0.80ではなく小さめの0.60とすると、男女とも9名で間に合う。



    "Nonsphericity corrention e"(非球面性修正項 e)は、球面性仮定が満たされれば1.0であり、満たさない場合は別の数値となる(最大値は1.0、最低値は 1/[反復数-1])。今回の例では、球面性仮定が当てはまるとする(デフォルト値1.0を用いる)。ところで、球面性仮定とは何か? 反復測定を行うと、「被験者内変数の全ての可能な対の差の分散」は等価のはずである。例えば、出力変数が3つの時期で測定されたとすると、時期1-時期2、時期1-時期3、時期2-時期3の間での「差の分散」はおおよそ同じ程度になるはずである。

    それでは、GPowerソフトでは"Nosphericity correction e"(非球面性修正項 e)で何を求めているのか?それは、球面性仮定がデータとどの程度良く一致しているかについてである。もちろん、あらかじめ準備的なデータがある場合は、何らかの精度で決定することはできる。仮に、準備的なデータが無く、球面性仮定が満たされていると仮定したい場合は、ここにはデフォルト値の1.0を入れる。しかし、データが完全な球面性からは逸脱するだろうという疑いを持つ場合は、1.0よりも小さな数値を入れることになる。「非球面性修正」が1.0よりも小さくなるにつれて、データは完全な球面性からは逸脱することになる。GPowerでの最低の数値は 1/[反復数-1] である。ただし、慣例として、「非球面性修正」は、反復測定分散分析では少なくとも0.75かそれ以上とされている。データが球面性仮定から実質的に逸脱すると予想されるときは、球面性仮定を必要としない多変量メソドを使っても良い。

     さて、「非球面性修正 e」の数値は何をするものなのか? 「非球面性修正」値が1.0よりも小さい数値として入力されると、それによって反復測定分散分析における自由度を修正させ、結果的に検定の臨界値(critical value)を大きくする。そして、球面性仮定が適合しないときには、大きな臨界値になることによって、臨界値の低下を修正する。言い換えると、「非球面性仮定」が適合しないときには、それが1.0よりも小さな数値のときに「第一種の過誤」の尤度が上がってしまうのと釣り合わせ(相殺)をしている。なお、「非球面性修正項」が1.0よりも小さな時には、それによって臨界値のカットオフ値が上昇するために、標本数への要求が高まることになる。

    ※反復測定 被験者内・被験者間交互作用の分散分析のビデオ

     https://youtu.be/T820ySBAlvQ

    ---------原文-------------------------------------------------
    38. ANOVA: Repeated measures, within-between interaction

    (Repeated measures ANOVA [RMANOVA] for testing the interaction between a within subjects variable and a between subjects variable)

    Example: Plan to enroll 16 people (8 women and 8 men) in a study testing effectiveness of a weight loss supplement. Participants’ weights will be measured at 1 month, 2 months, and 3 months. Time is the within subjects variable and gender is the between subjects variable. How many participants are needed to detect a significant interaction between the time variable and gender variable?

    Determine Effect Size = Select Procedure -> direct method. Partial eta squared (n2) is the effect size measure for the interaction between the within and between subjects variables. For this example, enter the amount of variability in the outcome that is accounted for by the interaction between gender and time. Approximate partial eta squared conventions are small = .02; medium = .06; large = 0.14.

    Click “calculate effect size” and transfer to main window.
    α err prob = choose a Type I error rate (usually 0.05 or 0.01)
    Power = select a level of statistical power (usually 80% or higher)
    Number of groups = levels of the between subjects factor. In this example there are 2 genders.
    Number of measurements = number of repeated measures. In this example there are 3 time periods.
    Correlation among repeated measures = enter approximate correlation among columns of repeated measures. Note that this value should be somewhat high because patients’ blood test results should be fairly consistent across time relative to other patients’ test results. In this example we’ll use the default value of 0.50.

    Nonsphericity correction e = 1.0 if sphericity assumption is met, something else if not met. (Highest value is 1.0, and lowest value = 1/[repetitions - 1].) In the current example we’ll assume this assumption is met (use default value of 1).

    What is the Sphericity Assumption? When running repeated measures the variances of the differences between all possible pairs of the within subjects variable should be equivalent. For example, if an outcome variable is measured at time1, time2, and time3, the variances of the differences between time1 - time2, time1 - time3, and time2 - time3 should be roughly the same.

    What is the "Nonsphericity correction E" value GPower asks for? This refers to how well the sphericity assumption is met in your data.

    Of course this can only be determined with any degree of accuracy if you have preliminary data. If preliminary data are not available and you want to assume that the sphericity assumption will be met, enter 1.0, the default value. If you suspect that your data will deviate from perfect sphericity, enter a value less than 1.0. The more the "nonsphericity correction" drops below 1.0, the more you expect your data to deviate from perfect sphericity. The lowest value GPower allows is 1 / (number of repetitions - 1). One convention holds that a "nonsphericity correction" value should be at least 0.75 or higher in repeated measures ANOVA. If you expect your data to deviate substantially from the sphericity assumption, you may want to use a multivariate method which does not require the sphericity assumption.

    What does the “Nonsphericity correction E" value do? When a “nonsphericity correction” value < 1.0 is entered it adjusts the degrees of freedom in the repeated measures ANOVA, resulting in a larger critical value for the test. Larger critical values correct for the lowering of critical values that occurs when the sphericity assumption is not met. In other words, a “nonsphericity correction” value < 1.0 balances out the likelihood of a Type I error that goes up when sphericity is not met. Note that a “nonsphericity correction” value < 1.0 will increase the sample size requirement because it raises the critical cutoff value.

    -------------------------------------------------------------
* 無断転載をお断りいたします。
* このコーナーの説明はご自身の責任でご利用ください。
 
 (C)All Rights Reserved by Toshiharu Kasai 2011 - 2018